Featured post

Quiz: Data PreProcessing

Friday, 10 January 2020

Data Preprocessing

1.Data Preprocessing

# Data Preprocessing Code Python


# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('Data.csv')
#: means we take all lines, :-1 means we take all columns except last one
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 3].values

# Taking care of missing data
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0)
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])

# Encoding categorical data
# Encoding the Independent Variable
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 0] = labelencoder_X.fit_transform(X[:, 0])
onehotencoder = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray()
# Encoding the Dependent Variable
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)

***********************************************************

# Data Preprocessing Code R


# Importing the dataset
dataset = read.csv('Data.csv')

# Taking care of missing data
dataset$Age = ifelse(is.na(dataset$Age),
                     ave(dataset$Age, FUN = function(x) mean(x, na.rm = TRUE)),
                     dataset$Age)
dataset$Salary = ifelse(is.na(dataset$Salary),
                        ave(dataset$Salary, FUN = function(x) mean(x, na.rm = TRUE)),
                        dataset$Salary)

# Encoding categorical data
dataset$Country = factor(dataset$Country,
                         levels = c('France', 'Spain', 'Germany'),
                         labels = c(1, 2, 3))
dataset$Purchased = factor(dataset$Purchased,
                           levels = c('No', 'Yes'),
                           labels = c(0, 1))

*******************************************************************

Github:
https://github.com/bansalrishi/MLData

No comments:

Post a Comment